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Abstract. A mixed-integer non-linear model is proposed to optimize jointly the assignment of capa-
cities and flows (the CFA problem) in a communication network. Discrete capacities are considered
and the cost function combines the installation cost with a measure of the Quality of Service (QoS)
of the resulting network for a given traffic. Generalized Benders decomposition induces convex
subproblems which are multicommodity flow problems on different topologies with fixed capa-
cities. These are solved by an efficient proximal decomposition method. Numerical tests on small
to medium-size networks show the ability of the decomposition approach to obtain global optimal
solutions of the CFA problem.
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1. Introduction

Network design is a fundamental problem with a large scope of applications which
have given rise to many different models and solution approaches (Mac Gregor
Smith and Winter, 1991; Ferreira and Galvao, 1994; Minoux, 1989). In data net-
works and more precisely, in the design of packet-switched networks with high
grade of service constraints, the design of the topology at lowest cost, the dimen-
sioning of the links to accept given demands between each pair of nodes and the
computation of optimal routes with the smallest packet delay, are so closely related
problems that it is largely justified to try to treat them within a common model, the
Capacity and Flow Assignment problem, denoted hereafter by the (CFA) problem.
To be more precise, the (CFA) problem can be formulated as follows: given a
basic topology and a requirement matrix, determine the capacity and flow variables
which satisfy the capacitated multicommodity flow constraints and minimize the
total design cost. The trade-off between investment costs and congestion is the
central feature of the proposed model. In other words, we will search an equilib-
rium between a low cost topology which tends toward a tree-like arc structure,
and a low delay multicommodity flow which tends to use multiple routes between
each origin—destination pair with a higher QoS (Quality of Service). The resulting
problem is very hard to solve when discrete capacities are considered, mainly
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because it contains as a subproblem a general network design problem which is
known to be NP-hard in most situations (Johnson et al., 1978). We will propose
in the present paper a new approach based on generalized Benders decomposition,
which aims at solving the (CFA) problem to optimality. We wish to point out that
the difficulty we intend to overcome with that computationally efficient algorithm
is the competition between dimensioning and routing in data networks and not the
combinatorial complexity of the network design problem itself.

The (CFA) problem has been first considered by Gerla in his thesis (1973) and
the early approaches used Kleinrock’s delay function and linear design costs, al-
lowing the application of the Flow Deviation algorithm to solve the corresponding
convex multicommodity flow problem (see Fratta et al., 1973). Most proposed al-
gorithms in the literature treat alternatively the Capacity Assignment problem and
the Flow Assignment problem like in Gerla and Kleinrock (1977) or in successive
papers by Gavish and collaborators (1989, 1990). Gerla et al. (1989) proposed
to embed the packet-switched network into a given backbone facility network
and they obtained local optimal solutions to the non convex design and routing
model. Lagrangian relaxation has been quite often used to split the problem into
separate design and routing (Gavish and Neuman, 1989; Balakrishnan and Graves,
1989; Sanso et al., 1991). Gavish has also introduced Augmented Lagrangians to
generate tight lower bounds in Gavish (1985).

On the other hand, the literature on the Capacity Assignment problem (without
routing costs or delay bounds) is very large and still growing as that problem is
by itself NP-hard and very important in practice. The present approach is comple-
mentary with polyhedral approaches which lead to branch-and-cut algorithms and
we will show in particular that many results on valid inequalities for these related
multicommodity flow formulations are of high interest to enhance the formulation
of our master program. These cuts, often called ‘metric inequalities’ (see Onaga
and Kakusho, 1971, or Bienstock and Giinlik, 1996), define the convex hull of the
discrete set of capacities for which there exist feasible multicommodity flows for a
given requirement matrix.

Different kinds of capacity modularities are considered in the literature like two-
facility network design problems where small capacities can be grouped in batches
(see Magnanti et al., 1995), but we do not address these special structures here.
The explicit modelling of capacities inside a non convex cost function has been
proposed in the literature, mostly using a concave cost which represents econom-
ies of scale (see Minoux, 1989). Gabrel and Minoux showed recently (1997) how
generalized linear programming can generate good lower bounds for the Capacity
Assignment problem with step increasing cost functions. Finally, separable con-
tinuous and non convex cost functions are considered in Luna and Mahey (2000)
to integrate QoS measures with fixed costs for capacity expansion problems.

After introducing the (CFA) model, where boolean variables are associated
with each type of capacity on each link to get a large-scale mixed-integer non-
linear multicommaodity flow problem, we discuss the application of generalized
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Benders decomposition. Resuming the main features of the method, the master
program, itself a linear program in 0-1 variables, adjusts capacities by adding cuts
derived from the successive solutions of convex routing subproblems. The detailed
algorithm is shown in Sections 3 and 4, followed by some numerical results which
confirm the potential of the decomposition approach as an exact method to solve
(CFA).

2. Modéling the (CFA) problem

We assume given the traffic requirements matrix and a basic network topology, i.e.,
a set of nodes and arcs where some capacities could be installed. It is clear enough
that a positive capacity will be installed if and only if a positive flow must be routed
on that arc, but it is possible that a potential link will not be used in the optimal
network, so that our (CFA) model includes the topology design problem.

In computer data networks, messages must be routed ‘simultaneously’ between
each pair of nodes. When the link capacities are fixed, the resulting routing problem
(the Flow Assignment problem) can be modelled with continuous flow variables.
In this routing problem, packets can take any number of different routes between
each source and destination; this is referred to as bifurcation. This modelling is
appropriate to either datagram or virtual circuit packet-switched networks.

Let G = (X, U) be the directed graph supporting the network, where X is a
fixed set of nodes (|X| = n) and U is the set of candidate links (U C X x X).
For each possible arc u € U, we consider a set of feasible capacities €, finite and
with positive values. In practice, the same capacity is assigned to both directions
associated with a link, which will imply additional constraints in the model.

2.1. FLOW CONSTRAINTS

We use a multicommodity flow formulation with an implicit arc-path representa-
tion of the network. Let X be the set of commodities (origin—destination pairs).

Let f, be the total flow flowing on arc u and x;, be the rate of messages
associated with commodity k£ flowing on path p between corresponding origin—
destination pair (o, di). The set of possible paths between these nodes is denoted
by & and the flow requirement by b;. Thus, a multicommodity flow satisfying
flow requirements is given by the following set of equations:

fM = Z Z TkpuXkp (21)

ke X pePx

where my,, = 1if path p for commodity k uses arc « and 0 elsewhere.

Z Xkp = bk (22)
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2.2. MODELLING DISCRETE CAPACITIES

Discrete capacities or step increasing design cost functions as well as fixed costs
have been considered in the literature about network design (see Gabrel and Min-
oux, 1997, for example), but the corresponding models do not include delay costs
or total average delay bounds.

To model the choice of optimal capacities among the finite sets C,, we create
multiple arcs for each link u = (i, j) € U and each capacity ¢ € C,. Let & =
{(u,c)lu € U,c € €,} be the set of virtual arcs in the resulting multigraph §.
The cost of installing capacity ¢ on arc u is denoted by X, for (u, c) € & and let
finally introduce a boolean variable y,. for each (u, ¢) € & to model the choice of
the capacity type on a link.

1 if capacity c is assigned to arc u
Yue = { 0 eIsep y g (23)
Then, we must add the following constraints :
> Yue 1. VueU (2.4)
ceCy
Yije = Yjie,Vu,c) € & u=(»,}j) (2.5)

to retrieve a capacitated network on topology G.
If we denote by f,. the total flow assigned to the directed link » with capacity
¢, the multicommaodity flow constraints can be written on § as:

fuc — CYuc g 0 ’ V(l/t, C) € & (26)

REMARK 1. (1) Observe that it is possible that y,. = 0, Vc € @,, so that the
link is not used.

(2) No doubt that the multigraph model will tend to increase the number of
boolean variables. On the other hand, we will see in section 3 that it induces
separability between continuous and discrete variables which is strongly needed
in the implementation of generalized Benders decomposition.

2.3. THE AVERAGE DELAY FUNCTION

Many different routing costs can be introduced to measure the grade of service or
the reliability of the network. We have chosen to model explicitly the total average
delay on the network. The average delay on arc u with capacity ¢, when a flow f,
circulates on it is given by Kleinrock’s law, assuming classical hypotheses on the
arrival of packets at each node, i.e., the computer network is modelled as a Jackson
network of queues in which each queue behaves as an independent M /M /1 queue.
Thus, the average delay on a link is proportional to :

Ju
Cu — Jfu

Tu(fuv Cu) =
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Expressions that are more accurate than the above can be found in Gerla and Klein-
rock (1977) and in Bertsekas and Gallager (1987), but, for most design purpose,
the Kleinrock’s formula is sufficiently accurate.

REMARK 2. (1) For a fixed capacity c,, the delay function 7, is a strictly convex
increasing barrier function of the flow, but for variable capacities, it is no more
jointly convex in (c,, f,,). It is moreover discontinuous in (0, 0).

(2) To define an optimization problem, one should minimize the design cost
subject to a total delay constraint. Relaxing that constraint would indeed lead to
the same combined cost we are going to define hereafter, but the non convexity
of the entire model would also impede to interpret the corresponding Lagrange
multiplier as the correct marginal price for one unit of delay, as we will observe in
the last section below.

2.4. (CFA) MODEL

The global (CFA) problem can thus be modelled on the formerly defined multi-
graph g by :

Minimize Y, el KucVue + ny—f]

subject to  f,. — cyue <0, Y(u,c) € &
Yocee, Jue = 24 2 pe ThpuXip, Vit €U

(P) 2 per, hp = Di

xk,, 2 0
> oce, Yue <1, YueU
Yije = Yjic V(u,c) € &, u=(,j)
Yue € {0, 1}

where y is a positive weight representing the scale between cost and delay.

If we denote by # the set of multicommodity flows { f,, }..cv satisfying (2.1) and
(2.2) and by Y the set of y,. € {0, 1} satisfying (2.4) and (2.5), then the model (P)
can be written as :

Minimize Y, el Kueyue + ¥ 2221
(P) | subjectto feF, yey
and fuc — CYuc g Oa V(“a C) S &

REMARK 3. (1) Like in most approaches dealing with the (CFA) problem, the aim
is to separate the Capacity Assignment problem (CA) from the Flow Assignment
problem (FA). But, we must recall here that this is not an easy task as, in general,
if f* solves (FA) with ¢ = ¢* and ¢* solves (CA) with f = f*, this does not mean
that (f*, ¢*) is even a local minimum for the (CFA) problem.
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(2) The flow constraints f € % should be developed using the multiple arc
flow variables f,.. There is indeed no need to transpose these notations, as the
flow subproblems will work directly with the f, variables on a specific topology
associated with a fixed y.

In the following, we will denote, for a given y € Y, by U (y) the set of arcs in U
with positive capacities, i.e., such that y,. = 1 for one c. Lettoo G(y) = (X, U(y))
be the corresponding partial graph.

3. A solution approach using generalized Benders decomposition

Benders decomposition (see Benders, 1962) has been mainly introduced to treat
mixed integer programs with underlying separable convex structure and it was
applied to network design in different situations such as concentrator location
problems (Geoffrion and Graves, 1974), optimal topology design (Magnanti and
Wong, 1981) or network design with underlying tree structure (Benchakroun et
al., 1997). Hoang has applied the generalized Benders decomposition to some
nonlinear model for network design (Hoang, 1982). On the other hand, the use of
Benders decomposition to treat discontinuous cost functions has been considered
by Holmberg for facility location problems (Holmberg, 1994).

Generalized Benders decomposition (see Geoffrion, 1972) is motivated by the
fact that, fixing the complicating variables, i.e., the boolean variables y, problem
(P) reduces to a convex cost multicommodity flow problem on a given topology
with fixed capacities. Indeed, fixing y € Y is equivalent to install capacities ¢, on
each arc u of the graph G = (X, U(y)).

In what follows, we summarize the approach and describe its application to our
model which can be written in compact form as:

Min Ky)+T(f)
(P) { subjectto g(f,y) <0
feF,yey

where g(f, y) is the vector function with components f,. — cy,c.

To solve (P) with the generalized Benders decomposition, we first complete the
projection of (P) onto the space of the complicating variables y. This projection is
defined as follows:

(PP) Min K@) +v@y)
subjectto y e YV

where
V={ylg(f,y) <0 forsome feF}
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and
v(y) is the optimal value of the subproblem,

min T(f))=y ZueU(y) T.(fu)

(SP =) { subjectto f € F(y)

where F(y) is the set of multicommodity flows with respect to the restricted
topology U (y).

It is easy to see that if y € Y[V then v(y) = SUp,>o [infrez T(f) +
wg(f, v)]. Furthermore, y € Y is also in the set 'V if and only if y satisfies

inf v. > e =
;2; v.g(f,y) > 0, forall v > 0 such that (Z)egv 1

These results are used to specify the following master problem (MP) which is
equivalent to (PP):

min K@)+t
(MP) subjectto InfrceT (f) 4+ ng(foy) <t, Yu >0
Infrerv.g(f,y) <0 Vv > 0, Z(u,c)e& Ve = 1
yeY

The difficulty to approximate the implicit function v and the related implicit
set 'V induces an iterative procedure where relaxed master programs are built by
adding constraints, the Benders cuts, which correspond to successive linearizations
(sometimes called cutting planes) of these implicit but convex objects.Therefore,
the relaxed master problem (RMP) takes the following form :

min K@)+t
(RMP) subject to InfrcrT (f) + pug(f,y) <t, 1<k <p
Infrerv".g(fiy) <0 1<r<gqg
yeY

Now, suppose we have computed an optimal solution (y, 7) of the relaxed prob-
lem (RMP); we can now solve the subproblem (SP — y).

If (SP — y) is feasible and v(y) < ¢, then it follows from Lagrangean duality
that (v, r) is an optimal solution of (MP). Otherwise, if (SP — y) is feasible and
v(y) > t, then using the vector of optimal multipliers /& associated with constraints
g(f,y) <0, acutof type |

Bi(y) = Infrer T(f) + ng(f.y) <t

is generated and introduced in (RMP) to specify a new relaxation of (MP).
Finally, if (SP — y) is not feasible, then a cut of type Il

By(y) = Infrepv.g(f,y) <0
is identified and added to (RMP).
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REMARK 4. (1) We will assume standard hypotheses to get finite convergence of
Benders decomposition, i.e., ¥ is non empty and the transformed (CFA) problem
is feasible.

(2) To solve Problem (SP-y), we decided to use a specially tailored distributed
algorithm based on the Proximal Decomposition method which was shown to be
very performant on large congested networks with a huge number of commaodities
(see Mahey et al., 1995). It is a primal-dual decomposition technique which in-
duces distributed computations among arcs and paths of the network and is further
described in the next section.

(3) Another important feature to understand the application of Benders decom-
position to (P) is the nature of the coupling between the continuous flow variables
and the boolean decision variables. We will not recall here the convergence results
of generalized Benders decomposition which can be found in Geoffrion’s seminal
paper (Geoffrion, 1972), but an important practical aspect to generate explicit cuts
is the following: there are two kinds of cuts which involve the minimization with
respect to the flow variables f of linear combinations of the objective function
of (P) and the coupling constraint. As the objective function KX (y) + 7 (f) and
the coupling constraint g(f,y) = f — cy are linearly separable in f and y,
the minimization can be performed independently of y and explicit cuts are then
easily obtained. As commented by Geoffrion (1972, p. 251), the separability hypo-
thesis is not necessary for convergence, but it is certainly strongly desired to get
implementable algorithms.

4. Application to the model
4.1. SOLVING THE CONVEX COST MULTICOMMODITY FLOW SUBPROBLEMS

We have used the Proximal Decomposition algorithm described in Mahey et al
(1995). It is a primal-dual massively distributed method which can be seen to
work like a separable Augmented Lagrangian method. The algorithm performs
two distinct steps at each iteration: a proximal step which regularizes the objective
function by adding a quadratic term depending on the previous primal—dual pair of
solutions, and a projection step on the coupling subspaces (associated with the
multicommodity flow constraints (2.1) and the copies of the dual variables for
each arc and each commodity). The Proximal Decomposition algorithm is closely
related to the Alternate Direction Method of Multipliers which have been applied
to convex multicommodity flow problems by different authors (see Eckstein and
Fukushima, 1993, for example).

As the set of paths between o, and d; is not known a priori, it is shown in
Mahey et al. (1995) how to substitute it at each iteration r = 0, 1, ... by a subset
which contains the previously generated paths. The proximal step consists of one-
dimensional convex subproblems for each arc « to find aggregate flows f/*1. Then,
new paths are generated by shortest paths calculation with link costs 7, (£!**) fol-
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lowed by a distributed updating of path flows and potentials. The whole algorithm
(applied to a topology U (y)) is represented below with the following notations:

P! will denote the set of paths between o, and dj already generated at iteration
t and let Ny = | P[|. For each arc u, let d(u) be the number of paths sharing arc u.
For each path p € P/, let |, | denotes the number of arcs of the path. The residual
vectors (violation of constraints (2.1) and (2.2)) associated with a multicommodity
flow f' are denoted by :

ro(fH) = Z anpux,ip — frand r(fY) = by — Zx,ip
kK p p

The dual variables are thus associated with equations (2.1) and (2.2) and will be
denoted by z,,, Vu € U(y) and Z;, Vk, respectively. The algorithm is stopped when
the commaodity residuals r; are less than &; and the optimality conditions (Kuhn-
Tucker conditions) are satisfied within a tolerance of ;.

algorithm (subprablem)

(1) Choose the convergence parameters e;, €2, A > 0,. Set the iteration index r =
0. The initial vectors £°, z°, Z% may be chosen arbitrarily.
(2) For each arc u compute

f’“—arg min {7,(f.) z;fu+5((fu>2—2(f’+r“(f )

< fu<cu 2 “d(u) )f))

(3) For each commaodity &, compute the shortest path that joins the origin o, and
the destination d,. The length for each arc u used for this computation is
T!(f!*1). This shortest path is added to P/ and N, is incremented, if it is not
already there. Then, the path flows are updated according to the following rule:

t+1 ! Z
Xt =max | 0,x;, + x(1+|nkp\) u
uckp

1 () "u(ft)
o | M A0
Jjekp

(4) Update the dual variables

A t+1 t+1 t A t+1
u s Ly =24+ —
d(u)r ), Z; r Nkrk(f )

(5) Test (fi ™, x;+*, z,t, Z ) for convergence and set 7 < 7 + 1 if one decides
to continue the iteration.

1
=7+
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4.2. CUTS GENERATION

The Benders cuts are of two types :
(1) Benders cuts of type | :

Bi(y) = Infrer T(f) + ng(f.y) <t

for all .« > 0, the dual vectors defined on &; r is an auxiliary variable such that

t = v(y) = Sup,-o Bi(y) at optimality.

For a given y, the dual variables w,. are generated by computing the optimal
multipliers associated with the coupling constraints (2.6) in the solution of (SP-y).
Optimality conditions for (SP-y) are :

#—Fﬂj_ﬁi‘f’“uc:o V(u’c)eg,l/t:(l.,j)

Muc P 0 s Muc(fuc - Cyuc) =0 V(Lt, C) €&

where g; is the optimal potential at node i.
The computation is now straightforward as u,. =0if y,. = 1:

optimal multipliers

For each arc u = (i, j) in the original topology U :

— Either 3¢ € ¢, such that y,; = 1 (i.e. u € U(¥)), then:

Mue = 0 B
yce 14 _
Muczm—;,vceeu and C#C
= Or > Jue=0(ie, u ¢ U(F)), then:
ceCy
Y 14
=TI, - Wlth r, —, Ve € G, with ¢y, = |nf {c}

In practice, we will always use the lowest value : T,

Lmi n

The cuts of type | are thus of the following form :

P+ ) ueCYue = v(F) (4.7)
(u,c)e€

(2) Benders cuts of type Il

Bo(y) = Infregv.g(f,y) <0

forall v > 0, Z(u’c)eg v.e = 1. These cuts are essentially feasibility cuts for
(SP-y). They are indeed equivalent to the following feasibility condition for the
multicommodity flow problem :
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THEOREM 1. A necessary and sufficient condition to exist a feasible multicom-
modity flow on topology U (y) is :

Yv 2 0 . Zlkbk § Z chc}_}uc
k

(u,c)eé

where [, is the length of the shortest path between o, and d; using arc lengths v,..

Proof. The conditions, sometimes referred as the ‘japanese theorem’, were first
developed by Onaga, Kakusho and Iri (see Onaga and Kakusho, 1971). The res-
ulting cuts, the so called ‘metric inequalities’, are a direct consequence of the
application of Farkas’ lemma to the arc-path formulation of the flow constraints
(2.1) and (2.2). Indeed, for given capacity decision variables y,., there exist non
negative path flows x;, such that

Z xk,, = bk, Vk

PEPk

- Z Z TkpuXkp Z _C}_}uc’ Yu

k pePk

if and only if Vi;, k € X and Vv, > 0, (u,c) € &, such that [, — ), mipuvuc <
0,Vp € &, we get :

Zbklk - Zc)_jucvuc < 0
k u

But the above conditions on the multipliers I, and v,. mean, as each b, is non
negative, that [, = Zueﬁ V. 1S the length of the shortest path p between origin o,

and destination d, with arc lengths v,.. O

Observe that these conditions authorize that some arc saturates when congested,
which is not allowed by our subproblem objective function, so that, in practice, we
must substitute ¢ by c¢. = ¢(1 — €), where € is a small positive tolerance.

A way to compute optimal multipliers v and the corresponding shortest paths
consists in verifying the existence of a feasible multicommaodity flow for the topo-
logy proposed by the master problem (i.e. for given y,.), by maximizing the dual
function

00) =Y bl — D CeFucvuc
k u

where [, are the corresponding shortest path lengths as said before. If the maximum
value 6* is nonnegative, there is no feasible multicommodity flow and we obtain
the corresponding feasibility cut by forcing the metric inequality in the master.
Maximizing 6, which is a non smooth concave function, is not an easy task. A
subgradient algorithm was used in our basic implementation to solve that problem.
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Indeed, for any non negative v, we can compute the shortest paths for each com-
modity with these weights and the partial derivative of the dual function 6 with
respect to v, IS :

rye = Z bk - Ce}_}uc (48)

keK,

where K, is the subset of commodities which use arc u when routed on the shortest
paths. The vector r is thus a subgradient of 6 at the current solution v. Observe
that —r, is the residual capacity of arc u when all commodities are routed on the
shortest paths. If that partial derivative is positive, the capacity ¢ of arc (u, ¢) is
violated and we must increase v,. to reduce the number of shortest paths which
concurrently use that arc. Any stepsize rule to update the solution in the subgradient
direction can be used (see Held et al., 1974, for classical update formulae). We can
stop the iterations as soon as some solution with 6(v) > 0 is obtained. When the
installed capacities are close to support a feasible multicommodity flow, it could be
necessary to perform many iterations to converge and the typical slow convergence
rate of subgradient algorithms may turn the procedure rather time consuming. We
show in Section 5.2 how an alternative method based on the max-cut problem can
be used to yield efficient cuts.

4.3. SUMMARIZING THE GENERAL ALGORITHM (MASTER PROGRAM)

(1) Set T = 0 and choose the convergence tolerance e3; initialize (RMP) (cf.
Section 5.1);

(2) Solve (RMP). Let (y*, t*) the optimal solution ;

(3) Test the feasibility of G* by the subgradient procedure; if there exist no
feasible multicommodity flow, add the corresponding cut of type Il and
return to 4.3 ;

Else, solve subproblem (SP —y®), let v(y") its optimal value :
If v(y™) < 17 + g3 then STOP (y7, ¢7) is ez-optimal for (P),
Else, compute the optimal multipliers [section 4.2] and add the corres-
ponding cut of type | to (RMP) and return to 4.3 ;

We will discuss in the next section the implementation aspects which are strongly
needed to get a computationally efficient algorithm to solve the (CFA) problem.

5. Addingvalid inequalities to the master
5.1. INITIALIZATION

In order to reduce the number of iterations, Geoffrion and Graves (1974), and Mag-
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nanti et al. (1986) advise to enrich as much as possible the initial master program
with valid cuts (see too the use of Pareto-optimal cuts in Magnanti and Wong,
1981).

Benders decomposition exhibits typical slow convergence and its efficiency de-
pends highly on its ability to avoid infeasible topologies (the ones which imply
Benders cuts of type I1). It is then particularly fruitful to introduce a priori cuts
which will help, but won’t guarantee, to find feasible topologies. Following that
objective and aware that the problem is harder at the beginning of the iterative
process, we have introduced the following constraints in the initial (RMP) :

Y cyije = VieX (5.9)
jex
and
Y yije=v; Vjiex (5.10)
ieX
with
Uit =Y b V=Y b
kew kew?

Vi={k/o=i} VY ={k/d=)

These constraints simply state that the total capacity of the arcs outflowing an
origin node or inflowing into a destination node can support the corresponding
offer or demand of flow. We will discuss in the remainder of this section some
more specific cuts which can be found in the literature under the spelling of cut-
set or cut-capacity inequalities for many distinct network design problems. They
are all special cases of metric inequalities and some of them can be separated
in polynomial time (see Bienstock et al., 1998, for more polynomially separable
metric inequalities). We will show too that deeper cuts can be obtained by solving
a max-cut problem, which is indeed NP-hard, but can be approximately solved by
good heuristics.

5.2. CONNEXITY CUTS AND CUT CRITERION

If, for agiven y in Y, G(y) is not sufficiently connex (we mean here that there exist
at least one path between each origin—destination pair), the feasibility cut (of type
I1) discussed in section 3 is a weak cut. Deeper cuts can be generated by sorting
the connex components of the graph G (y):
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— Generate the L connex components, Sy, ..., Sg.
Let:
ot(S) ={(u,c) € &,u=(,j)/ieSandj ¢S}
0 () ={(u,c) € E,u=(,j)/jeSandi ¢ 5}
\Df“:{k/ok € S;anddk ¢S]}
\IJZ_ = {k/dk e S and Oy ¢ S]}
‘//z+ = Z bk
ke\llfr
‘pz_ = Z by
ke,
- Fori=1,..., L, add to (RMP) the constraints :

o vz (5.11)

(u,0)€w™(S))

D Ve =Y (5.12)

(u,c)ew™(8))

More efficient feasibility cuts can be obtained by searching a cut of maximum
weight in a weighted multigraph. The multiple arcs are defined by each pair (u, ¢)
associated with the weight —c, y,. with, again, ¢. = (1 — €)c where € is a small
positive tolerance to avoid saturation of the arcs. In addition, we add an arc (o, di)
with weight b, to each origin—destination pair. The maximum weight cut on that
graph will generate a feasibility cut if its weight is positive. Indeed, a positive cut
in that multigraph implies that, keeping the precedent notations o™ (S) for the arcs
flowing out of the cut set S and W (S) for the set of commodities with origins in
S and destinations outside S, we have:

— Z C.Yue + Z b, >0

(u,c)ew™(S) keWwt(S)

which means that the cut constraint of type (5.11) is violated.

Computing a maximum weight cut is again NP-hard, but good heuristics have
been proposed in the literature (see Barahona, 1996, for instance). In Section 5.3
below, these cuts will be referred as “cut criterion’.

5.3. SPANNING TREE CUTS

When the y decision variables describe a tree structure (i.e. a connex graph with n—
1 arcs), the feasibility test is very simple as each commodity can use a single path.
When it is infeasible, the added constraints have the same form as the connexity
cuts described in the precedent section.
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Suppose indeed that G (y) defined by y is a tree and denote by the index k1 the
unique path associated with each commodity k. Observe that a feasible multicom-
modity flow on G(y) is uniquely determined with individual values x;; = by and
total value on each arc u determined by :

fu= Z Tirubi
k

Let Vo ={u e U(y) | fu > cyuc}. If Vo = @, the tree is feasible and we need only
to compute the corresponding delay value.
If Vo # 0, feasibility cuts can be easily obtained as we show below:

PROPOSITION 1. Letu = (i, j),u € Vg be an infeasible arc and let S, and
X \ S, be the two connex components associated with the deletion of arc u from
the tree G(y). If §, is the set of arcs in X such thati € S, and j € X\ S,, and
y, is the set of commodities with source node in S, and sink node in X\ S,, then a
valid inequality is given by :

chyvc = Zbk (5.13)

vES, keyu

Proof. For all arc (u, ¢) of the tree G(y), we have:
Z Cy = CyYuc
VES,
and
Z fuc = fu = Zbk
ceCy keyy
Moreover, if u € Vj, the cut associated with S, is violated, i.e.:

fu > CVue == Zbk > chvc

keyy VES,

The valid cut is no more than part of necessary conditions for a feasible multicom-
modity flow on G (y) for one given disconnecting arc. a

6. Numerical tests

We have tested the decomposition algorithm for the (CFA) problem on small and
medium size networks with different characteristics. In all our tests performed on a
Sun Sparc 10 workstation with 32 Mb RAM, the master program has been solved
using CPLEX and the subproblems were solved by the Proximal Decomposition
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method described in Mahey et al. (1995). The test-beds are relatively small net-
works (up to 25 nodes and 62 arcs) but with dense requirement matrices (up to 500
commodities). These figures reflect however the complexity of some real situations,
for instance when dealing with the design of private networks. We will show at
the end of this section some experimentation on larger networks, but where initial
capacities have been already settled to support the traffic load (see the Network
Expansion problem and Table 5). All networks and data come from real-world
situations which have been selected with the agreement of France Telecom; more
details about their structure can be found in Boyer (1997) (Networks 1-6). The
following precisions have been used in all tests: each restricted master is solved by
CPLEX with a 10~ precision and the convex subproblems used a 10~ tolerance
(the same for £, and ¢,); finally, the final convergence test to stop Benders iterations
was taken as g3 = 102,

Solving much larger design problems with an exact method is probably hopeless
as long as global optimality is pursued, but we can expect to be able to lower the
cpu times by reducing the computational complexity of the successive master pro-
grams. Indeed, big efforts have been made to design fast convergent algorithms for
the convex cost multicommodity flow subproblems (see the compared performance
of various algorithms among which stands the Proximal Decomposition method in
Ouorou et al., 2000). No comparable effort has been done to reduce the master
computational cost, and this explains partly why most of the cpu time is spent with
CPLEX iterations solving the master. But the key point to explain the variations of
the relative weight in cpu time of the master problem with respect to the subprob-
lems is the effect of congestion. It can be illustrated in two distinct situations : the
example of network 2 with increasing arc densities (see last column of Table 4);
we observe that the master wastes always more than 80% of the total cpu time and
that the ratio reaches 99.9% when density is greater than 60%. On the other hand,
the example of network 6 where most of the arcs capacities are held fixed, reducing
the possibilities to spread congestion among many paths, the situation is reversed
and the subproblem is much harder to solve (see Table 5). The congestion effect is
here steered by the parameter y which, as will be explained below, tends to reduce
the delay, thus the congestion, when increased.

There are many directions to alleviate the master complexity, some of which
have been discussed in many places in the literature. A common feature is the
relaxation of the master program which must be controlled to maintain overall
convergence (see Geoffrion and Graves, 1974, for example). As our internal solver
is CPLEX, we have decided to investigate the possibilities to reduce the number
of iterations. A crucial point in most implementations of Benders decomposition
is the efficient use of feasibility cuts, either a priori or iteratively generated cuts.
The introduction of specific cuts has been described in the previous section where
different kinds of constraints have been proposed, i.e.:

— Connexity cuts
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— Spanning tree cuts
— Feasibility cuts (cut criterion)

We have compared the relative efficiency of adding the three types of cuts which
we described in the precedent section. Let A, B, C and D represent the implement-
ations of the master problem respectively without a priori cuts, with connexity
cuts only, with both connexity and tree cuts, and finally with all cuts including
cut criterion computed by the max cut heuristic. Algorithm A could solve only a
small number of problems, for which the number of iterations was reduced to 22%
in average by algorithm B. Algorithm C improves algorithm B by a factor 2 and
the cut criterion could still reduce the average number of iterations to 70% of the
performance of algorithm C.

Implementation issues resulting from the specific nature of the (CFA) model are
concerned too with the choice of the delay/cost parameter . We observe on Tables
1 and 2 how sensitive is the convergence with respect to increasing values of that
parameter. Recall that different values of y correspond to different (CFA) problems
and, as the general problem is not convex, we cannot drive it to an optimal value
(i.e., one which could force the average delay to be feasible with respect to some
given upperbound AT). Intuitively, the delay will tend to decrease if we increase
y. On the other hand, the design cost will increase to allow a higher quality of
service. The tests reported in Table 1 confirm this intuition. We observe that only
four distinct pairs (cost, delay) are available among the 10 tests.

A less intuitive effect is the growth of the number of iterations. Table 2 shows
that cpu times, the number of iterations and the number of Benders cuts of type |
increase with y.

Tables 3 and 4 resume the general behaviour of the algorithm with respect to
problem parameters, mainly the size of the graph (Tables 3 and 4), the density
(Table 4) and the number of different capacities on each arc (Table 3).

The final tests are slightly different from the above as they consider a network
expansion problem where the topology is initially fixed such that a given traffic load
can flow through the network. To improve the global quality of service, the arcs of
that topology can be resized but not eliminated from the network. This means that
exactly one positive capacity has to be installed on each link (i.e. constraint (2.4) is
forced to an equality). Table 5 shows the impact of the delay/cost parameter on the
results and the increasing weight of the convex subproblems in the cpu time. This
last fact is due to the increasing difficulty to solve the subproblems with highly
congested networks.

7. Conclusion

We have shown an exact method based on Benders decomposition to solve nonlin-
ear mixed-integer models of the (CFA) problem. The application of the decompos-
ition scheme is not straightforward and we have focussed on the use of feasibility
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Table 1. Influence of the y parameter on the cost

Network 2

Problem n(nbof m (nbof Density nb of nb of capa-

size nodes) arcs) ﬁ commod. cities
10 30 0.33 78 4

Tests y Design Delay Delay Total

cost value cost cost
Test 1 1.0 947.42 7.53 7.53 954.95
Test 2 2.0 947.42 7.53 15.06 962.48
Test 3 4.0 947.42 7.53 30.13 977.55
Test 4 6.0 953.53 5.64 33.85 987.38
Test 5 8.0 953.53 5.64 45.12 998.65

Test 6 10.0 956.56 5.20 51.99 1008.55
Test 7 12.0 956.56 5.20 62.39 1018.95
Test 8 14.0 959.71 5.06 70.83 1030.54
Test 9 16.0 959.71 5.06 80.96 1040.67
Test 10 18.0 959.71 5.06 91.07 1050.78

Table 2. Influence of the y parameter on the performance

Network 2

Problem n(nbof m (nbof Density nb of nb of capa-

size nodes) arcs) ﬁ commaod. cities

10 30 0.33 78 4

Tests y Iteration CPU Type | Total nb

number  time (s) cuts of cuts
Test 1 1.0 5 13.9 2 22
Test 2 2.0 5 13.9 2 22
Test 3 4.0 6 19.2 3 23
Test 4 6.0 8 36.3 5 25
Test5 8.0 14 85.3 11 31
Test 6 10.0 24 243.9 21 41
Test 7 12.0 33 634.5 30 50
Test 8 14.0 47 1367.2 44 64
Test 9 16.0 72 2901.4 69 89

Test 10 18.0 72 2935.7 69 89
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Table 3. Twenty-five nodes network with one to three capacities

Network 5
Problem  n (nb of m (nb of Density nb of y
nodes) arcs) n(n’”—_l) commod.
25 62 0.103 298 1.0
Tests Nb of Nb of Nb of CPUI Total nb

capacities  integer var. iterations  time (s) of cuts

Test 1 1 62 23 411 198
Test 2 2 124 24 225.9 208
Test 3 3 186 76 24549.7 260

Table 4. Ten nodes network with increasing densities

Network 2
Problem  n (nb of nb of nb of max nb of y
nodes)  capacities commod. arcs

10 4 78 90 1.0

Tests Nb of Density Nb of CPU I Master
arcs iterations time (s) rel. weight

Test 1 18 0.20 4 1.56 85.3
Test 2 24 0.27 4 3.27 94.2
Test 3 30 0.33 5 14.4 98.2
test 4 36 0.40 6 30.98 99.0
test 5 48 0.53 22 1261.3 99.8
test 6 60 0.67 25 4157.48 99.9
test 7 72 0.80 25 8729.5 99.9
test 8 90 1.00 26 24418.3 99.9

cuts which tend to reduce the number of iterations of the master program. We
believe that the combination of these cuts with the relaxation of the global optim-
ality of the master will help to solve much larger instances of the network design
problem.

The numerical results are restricted to some real communication networks as
our aim was mainly to justify the use of exact methods for the design of private
communication networks. More tests on different, randomly generated networks
should be performed to definitively state the potential of generalized Benders de-
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Table 5. Network expansion problem

Network 6

Problem n(nbof m (nbof Density nb of nb of capa-

size nodes) arcs) ﬁ commaod. cities
30 72 0.08 433 9
Tests y Iteration CPU Type | Master
number  time (s) cuts rel. weight

Test 1 0.5 5 673.2 4 0.004
Test 2 0.75 9 1248.6 9 0.007
Test 3 1.0 17 2392.6 15 0.025
Test 4 15 48 8092.5 47 0.198

composition for the nonlinear (CFA) problem. The numerical performance of the
algorithm is largely dependent on the capacity to solve the successive master pro-
grams. We believe that substituting the Cplex solver by an ad hoc algorithm for
topology optimization under feasibility constraints will reduce the computational
burden of the master problems.
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